PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Influence of vacancies on the melting transition of hard disks in two dimensions
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We present the results of molecular dynamics simulations of two-dimeng@Bbphard disk systems in the
vicinity of melting. The simulations are used to calculate the elastic constants, which can be used to estimate
the location of the Kosterlitz-Thouless dislocation unbinding transition. Simulations on defect-free lattices
indicate that this transition is expected to occur at essentially the same density as a first-order solid-isotropic
transition and so it is not possible to rule out either a one step weak first-order transition between the solid and
the isotropic fluid or a two step transition via a hexatic phase. Simulations performed on systems with vacan-
cies indicate that the elastic constants are essentially unchanged at constant density. This result implies that
vacancies have little influence on the melting of 2D hard disk solids.

PACS numbd(s): 62.20.Dc, 05.20-y

[. INTRODUCTION has been provided by simulation studies. Indeed, if we con-
centrate on the most simple 2D system with translational
The nature of the melting transition in two-dimensional degrees of freedom, namely hard disks, the situation is not at
(2D) systems has long been a controversial problem. 2D solll clear. Simulation studies provide inconsistent results, with
ids are qualitatively different than higher-dimensional sys-claims for a weak first-order solid-isotropic transition
tems because the density-density correlation function decays2,13,15,19,2pand also a continuous solid-isotropic transi-
algebraically to zero. This means that 2D solids possess onljon [21]; however, since the simulations are performed on
quasi-long-range positional order and not the true long-ranggnite size systems, the possibility of the pressure tie line
positional order characteristic of three-dimensiof@D) sol-  found for the first-order transition becoming shorter or van-
ids [1]. In the early 1970s, Kosterlitz and Thoulef€T)  ishing altogether as the system size is increased cannot be
suggested that the nature of the melting transition in 2D isuled out[18]. The most recent study on extremely large
qualitatively different than that in 3D and showed that thissystems appears to indicate that while a continuous solid-
could proceed as a continuous transition, initiated by the disisotropic transition does not occur, neither the first-order
sociation of dislocation pair2]. It was later shown that the  solid-isotropic pathway nor the continuous solid-hexatic-
resulting phase is not isotropic since it retains quasi-longisotropic pathway can be ruled of23]. This appears to be
range bond orientational order and that a second transitiogue to the fact that the density at which the solid-hexatic
from this hexatic phase, via the formation of disclinations, isdislocation unbinding transition is predicted to occur, that is,
necessary for the system to become isotr¢pie5]. Accord-  \whenK reaches the value 16 coincides with the density of
ing to the Kosterlitz-Thouless-Halperin-Nelson-Young the solid at which a first-order melting transition would take
(KTHNY) theory, 2D solids melt via two successive continu- place[16]. While the question of whether the melting path-
ous transitions inVOlVing the Unbinding of dislocations andway for hard disks proceeds via a hexatic phase is unre-
disclinations, respectively. The solid-hexatic dislocation un-splved, there is strong evidence for the existence of a hexatic
binding transition is predicted to occur when the dimension-phase in other 2D systems; for example, hard core disks with

less combination of elastic constamtsequals 16r [3,4], very narrow attractivéor repulsive potentials, although this
1 phase does not necessarily occur as part of the melting pro-
K = 1 1 kB_T — 164 1) cesq 24]. Systems of particles interacting via such potentials
m Ntu)aa? ' exhibit an isostructural solid-solid transition in which the

lattice spacing jumps discontinuously and, just as for a

where\ andu are the 2D Lamelastic constants aralis the  liquid-vapor transition, the isostructural transition can have a
lattice spacing. However, the KTHNY theory predicts only critical point above which the distinction between the two
the point at which the solid becomes unstable to the generghases vanishe$25]. Since the bulk elastic constant
tion of free dislocations and does not rule out the possibilityB=\ + u= p(JP/dp)+ vanishes at the critical point, there is
that this transition can be preempted by, for example, a finite region around the critical point whefe< 16+ within
single first-order transition between the solid and isotropiovhich the solid is unstable to dislocation unbinding. If the
liquid [6,7]. range of the potential is short enough so that the solid-solid

Many experimental8—11] and simulationf12—-23 stud-  critical point occurs far from the solid-liquid transition, the
ies have focussed attention on the determination of the melinduced hexatic phase will also occur far from the melting
ing pathway of 2D solids and these suggest that the meltindensity. In this case, another hexatic phase may also be in-
scenario for 2D systems is not universal but is dependent omolved in the melting transition. As the range of the potential
specific properties of the systems, that is, on the interparticles increased, the critical point shifts towards the melting line,
potential. The experimental evidence appears to point to the hexatic phase becomes considerably wider, and a first-
continuous pathway via the hexatic phase, whereas contragirder hexatic-liquid transition can be obsenjéd,26. The
ing evidence for both continuous and first-order transitiondmportant result of these simulations is that small differences
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in the potential can drastically change the phase behavior and 1000 3
so experiments on colloidal systerf8-11], in which the (a) :
interparticle potential is never truly hard body, and simula- B, u
tions of hard disk systems are not always strictly compa- ’ .
rable. L
Simulation studies into the melting transition of 2D hard 100 1 LA
disks have so far only been performed for perfect crystals. PP
As the melting transition is approached defects are expected i o ’
to occur in the solid. Speedy and Rej&3] have studied the 8
formation of cavities in 2D hard disk systems and have ob-
tained estimates for the vacancy concentration in the solid 10 : : : :
phase. Their results indicate that at densities0.98 (units 085 09 095 100 105
o2, whereo is the diameter of a digkthe vacancy con- p
centration is small enough to be neglected. As the density is 100.0
lowered, the vacancy concentration rapidly rises up to about (b)
two vacancies per 1000 particles at the melting dengity K
~0.91. It is important to know whether vacancies at this 100 |
concentration will influence the melting pathway and the ma-
jor point of this paper is to investigate this. In Sec. Il, we o P
describe simulations performed on perfect crystalline sys- o 8 >
tems, which are necessary as a reference system and, in Sec. 1.0
I, the results of simulations on systems with vacancies are ’
presented and discussed.

—
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Il. SIMULATIONS ON PERFECT CRYSTAL SYSTEMS P

One of the most important implications of the KTHNY 200
theory is that, at the solid-hexatic melting density, a certain p (c)
combination of elastic constants takes on the universal
value of 167 [see Eq.(1)]. Since the elastic properties de- 15.0 1
pend on the melting mechanism, the elastic constants should
provide a useful tool for understanding the nature of the
melting transition. We have determined the 2D Lagtastic
constants\ and u over a range of densities using molecular 1009
dynamics simulations on slightly distorted systeli2?8—30. el
Both stretched and sheared box simulations were used to

calculateN and u using the stress-strain relations given by 5.0 , - - ,
Wallace[31,32. Care was taken to ensure that the applied 085 0% 09 100 105 110
strains were sufficiently small to give a linear response of the p

diagonal and off-diagonal components of the stress tensor, FIG. 1. (a) The bulk and shear elastic constanBs=\+ u

respeptively_, and that no plastic flow occured in the _shearegi"ed symbol$ and u (open symbols of the 2D hard disk solid
box_ S|mulat|c_)n. The bulk modulus was compared with thatyyiained from simulations with@) 480, (1) 1920, and () 4320
available directly from the equation of stateB  particles. ) Results of Wojciechowski and Brka [16] and ¢)
=p(dP/dp)r, as a check for internal consistency. Once  senguptaet al.[33]. (b) The dimensionless combination of elastic
and u have been obtained as a function of density, it isconstantsk=K/167 [see Eq.(1)]. (c) The equation of state ob-
straightforward to obtairk [see Eq.(1)] and so determine tained for a system of 1008 particlélled symbol3. The arrows
the density at which the KT disclination unbinding transition indicate the location of the KT dislocation unbinding transition pre-
should occur. Simulations to determine the elastic constantdicted by (solid) the present data an@lotted Ref. [33]. Units:

for the defect-free 2D hard disk solid have already been perdensity p in ™2, pressureP, and elastic constants and u in
formed by Wojciechowski and Br&a[16] and by Sengupta kgT/o?.

et al.[33]. While there is a general agreement for the density

dependence of the bulk elastic constant from these two stu@nd 4320 hard disks; the earlier simulations of small systems
ies (which can easily be checked using the equation of stateby Wojciechowski and Braka were performed on 56 par-
the values of the shear modulus obtained by Sengeipté  ticles[16].

are much lower than those by Wojciechowski and ‘Bean The density dependencies of the bulk and shear elastic
and the former authors claim that this large difference isconstantsB=\+ u and u, respectively, obtained from the
caused by the small systems used by the |888}. Since the stress-strain relations are plotted in Fig. 1, along with the
behavior of the perfect crystal is clearly important if we wish density dependence & [see Eq.(1)] and the equation of
to understand systems with vacancies, we have performestate. The data for the bulk elastic constBrare in essential
extensive simulations to determine the density dependence afyreement with earlier works. However, the data for the
the elastic constants using systemsNof 200, 480, 1920, shear elastic constapt for all system sizes studied appear to
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FIG. 2. Average number of vacancié,)/N for the 2D hard K (b) &
disk solid. Data determined following the approach of Bennett and w0
Alder (see text[35] and (J) data obtained by Speedy and Reiss 150 | o
[27]. Units: densityp in o~ 2. i
a0
be in good agreement with that obtained by Wojciechowski 1.00
and Brarka [16], rather than that of Senguptt al. [33].
Indeed, the only significant difference between our results
and those of Wojciechowski and Biem is for the lowest
density studiedp=0.92, where the pressure in the larger 0‘50084 o8 oo 006
systems is found to be slightly higher than in the smaller ) ) ) p )
ones, presumably because the periodic boundary conditions
combined with the small box size helps stabilize the solid 120 l
[23]. Indeed, at this density we were unable to obtain reliable P (c)
results for the shear elastic constant because, even for very
small strains, plastic flow occured in the simulation. The 100 -
location of the KT dislocation unbinding transition, which o
occurs wherK =164, determined from our simulations dif-
fers rather significantly from that determined from the results 3.0 A /
of Sengupteet al,, as shown in Fig. (b). Figure Xc) indi-
cates the location of the KT transition in relation to the equa-
tion of state. The present results indicate that the transition

should occur ap=0.9075(25), essentially at the same den- 60 ' '

. . . " 0.84 0.88 0.92 0.96
sity at which the first-order transition would occur p
[15,17,18. We note that the elastic constants determined are
the bare elastic constants and, as such, are an upper estimater|G. 3. (a) The bulk and shear elastic constanBs=\+ u
of the elastic constants of the infinite size system and sgfilled symbol$ and » (open symbols of the 2D hard disk solid
provide a lower bound to the KT transition density. How- with vacancies. Simulations were performed on a system with 1008
ever, the results for the largest system appear to indicate théitice sites and@) zero vacancies,[{) two vacancies, and/()
the renormalisation of the elastic constants by longer wavefour vacancies(b) The dimensionless combination of elastic con-
length phonons is very weak. Moreover, if we allow for al- stantsk=K/16w [see Eq(1)]. (c) The equations of state obtained
gebraic decay oK in the vicinity of melting[4], then we for the 2D hard disk solid with vacancies. The solid line indicates
again might expect the KT transition density to shift to Verythe equation of state taking vacancies into account, whereas the
slightly higher densities. The results of Senguetal. lead dotte_d Iine_ indicates the equation of sta_te with no vacancies_. Units:
to a much higher value gf=0.9450(25) for the KT transi- denS|t¥p in o2, pressureP, and elastic constants and u in
tion density. This seems somewhat surprising since it i&keT/o*.
rather deep into the region which is generally taken to be
solid[15,18. is entirely consistent with large scale simulations of 2D hard

We conclude this section by noting that analysis of thedisk systemg23].

elastic constants of the 2D hard disk system indicates that the
KT dislocation unbinding solid-hexatic transition occurs at
p=0.9075(25), that is, essentially at the same density at
which a solid would melt via a first-order solid-isotropic ~ We may expect that vacancies in a crystalline lattice will
transition[15]. It appears that we cannot say one way or thesoften the system, leading to lower elastic constants and a
other whether the 2D hard disk solid melts discontinuouslyshift of the KT transition to higher densities. To properly
through a one stage first-order transition or continuouslydetermine the influence of vacancies in the solid phase, we
through a two stage transition via a hexatic phase. This resuthust of course ensure that the equilibrium concentration is

IIl. SIMULATIONS ON DEFECT CRYSTAL SYSTEMS
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achieved for each density studied. This is not an easy task in Molecular dynamics simulations were performed for a
a simulation, because the number of lattice sites is usually defect-free system dfi=1008 particles as in Sec. Il, to ob-
conserved quantity. Even if by some means the system caain the equation of state and the elastic constants as a func-
change the number of lattice sites, it will be at the cost of &jon of density. The same system, with, .. particles re-
distortion or a restriction of the number of lattice sites thatmoyved, was then used to investigate the influence of
can be achieved and so the solid cannot achieve its true equyjacancies; we performed two series of simulations with
librium concentration of vacancies. An excellent discussionNUaczz and 4. Simulations were performed only for densi-
of this and other problems of simulating solids is given byjes ,< .95, where vacancies are predicted to occur at a high
Swope and Apderse[r$4]. To understanq if vacancies influ- enough der’15ity such that they cannot be igndzd. In

ence the melting transition in 2D hard disks, we have taken %very case, long equilibration ruri§0000 molecular dy-

different approach in which we simulate a few systems mnamics(MD) steps or more, where one step meahsolli-

which the vacancy concentration is fixed, ranging from Zerosions were performed to ensure that the vacancy had dif-
(the perfect crystalup to about double the values determined P R . y .
by Speedy and Reiss at densities in the vicinity of the melt_fused away from its initial location. Results for the density

: L . . . dependencies of the elastic constants and pressure for the
27]. Bef h lcul for the . ; P
ing transition[27]. Before discussing the calculations for the ifferent systems witN, ,.=0, 2, and 4 are shown in Fig. 3.

elastic constants, we note that we have computed the va- te that in all the densiivis th ber densitv of
cancy concentration as a function of density, as an indepe Note that in all cases, the densjiyis the number density o

dent check for the values obtained by Speedy and Reiss. Qe system. It is apparent from F‘Qi??a”d 3b) that the
have followed a method similar to that used by Bennett and'astic constants do not depend significantly on the vacancy

Alder for hard spherek35]; the general idea of this method concentration. Indeed, the location of the KT transitieae

is to measure the Gibbs free energy difference on the reEig' 3(b)] appears to be essentially unchanged when vacan-

moval of a particleor the creation of a vacangyThe Helm- cies are introduced into the system. The only observable dif-

holtz free energy differencg, on the insertion of a particle ferer;)ce gccurts |n<tge8§qtuhatlgntoff st%;ieethﬁg. &:):![' At I
into a vacancy can be calculated by trial insertion on a sys[]urn er densitiep=0.6c, e data Tor the three systems a

- : follow the same continuous line, as we expect since the lig-
tem with & single vacancy, uid is known to be the stable phase in this reg[h@] and so
f,=—kgTlog[ ViePacd Vwo 1, (2)  the introduction of vacancies only serves to lower the den-
sity. This is not the case in the solid branch. Here, the intro-
where Vs is the volume of the Wigner—Seitz cell and duction of vacancies leads to a shift in the equation of state
PacdVwe is the probability that a trial insertion will be to lower densities. Since we do not expect the crystalline
accepted within the vacant cell. However, since the producsystem to be able to rearrange itself to form a system with
VwsPacd( Ve is equal to the cavity volume, actual particle fewer lattice site$34], the data do not lie on the same curve.
insertions do not need to be performed, rather the cavityhe pressure for each system is essentially constant at fixed
volume needs to be calculated. Note that we are assumirlgttice site density, which means that the pressure is in-
that interstitial-vacancy pairs are not forméthd thus that creased on the introduction of vacancies at fixed number
no new vacancies are createshd so the cavity volume mea- density[see Fig. 8&)]. From the results presented in Fig. 2,
sured is due only to the presence of the one imposed vawe expect the system to follow an equation of state which
cancy. Once the change in free energy of a crystal due to therosses smoothly from that determined féy,.=0 to that
creation of a vacancy, which is equal tof ,, is known the  for N,,.=2, as shown in Fig.®). While this means that the

average number of vacancies may be calculfB&d melting density of the solid will be reduced, this is not
shifted significantly 0.2%) for the vacancy concentrations
(N,) —exq] — (u—f)/kgT] 3) typical of the hard disk fluid at meltinf27]. We conclude
N p= T el that the melting mechanism is essentially unchanged with the

) . ~_introduction of the small number of vacancies expected in
The cavity volume was calculated as a function of density inhe vicinity of the melting transition.

the solid phase using the algorithm described in R2T).

For the chemical potentigk we have used the value deter-
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