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Influence of vacancies on the melting transition of hard disks in two dimensions

Martin A. Bates and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 22 November 1999!

We present the results of molecular dynamics simulations of two-dimensional~2D! hard disk systems in the
vicinity of melting. The simulations are used to calculate the elastic constants, which can be used to estimate
the location of the Kosterlitz-Thouless dislocation unbinding transition. Simulations on defect-free lattices
indicate that this transition is expected to occur at essentially the same density as a first-order solid-isotropic
transition and so it is not possible to rule out either a one step weak first-order transition between the solid and
the isotropic fluid or a two step transition via a hexatic phase. Simulations performed on systems with vacan-
cies indicate that the elastic constants are essentially unchanged at constant density. This result implies that
vacancies have little influence on the melting of 2D hard disk solids.

PACS number~s!: 62.20.Dc, 05.20.2y
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I. INTRODUCTION

The nature of the melting transition in two-dimension
~2D! systems has long been a controversial problem. 2D
ids are qualitatively different than higher-dimensional s
tems because the density-density correlation function de
algebraically to zero. This means that 2D solids possess
quasi-long-range positional order and not the true long-ra
positional order characteristic of three-dimensional~3D! sol-
ids @1#. In the early 1970s, Kosterlitz and Thouless~KT!
suggested that the nature of the melting transition in 2D
qualitatively different than that in 3D and showed that th
could proceed as a continuous transition, initiated by the
sociation of dislocation pairs@2#. It was later shown that the
resulting phase is not isotropic since it retains quasi-lo
range bond orientational order and that a second trans
from this hexatic phase, via the formation of disclinations
necessary for the system to become isotropic@3–5#. Accord-
ing to the Kosterlitz-Thouless-Halperin-Nelson-Youn
~KTHNY ! theory, 2D solids melt via two successive contin
ous transitions involving the unbinding of dislocations a
disclinations, respectively. The solid-hexatic dislocation u
binding transition is predicted to occur when the dimensi
less combination of elastic constantsK equals 16p @3,4#,

K5F S 1

m
1

1

l1m D kBT

4a2G21

516p, ~1!

wherel andm are the 2D Lame´ elastic constants anda is the
lattice spacing. However, the KTHNY theory predicts on
the point at which the solid becomes unstable to the gen
tion of free dislocations and does not rule out the possibi
that this transition can be preempted by, for example
single first-order transition between the solid and isotro
liquid @6,7#.

Many experimental@8–11# and simulation@12–23# stud-
ies have focussed attention on the determination of the m
ing pathway of 2D solids and these suggest that the mel
scenario for 2D systems is not universal but is dependen
specific properties of the systems, that is, on the interpar
potential. The experimental evidence appears to point
continuous pathway via the hexatic phase, whereas cont
ing evidence for both continuous and first-order transitio
PRE 611063-651X/2000/61~5!/5223~5!/$15.00
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has been provided by simulation studies. Indeed, if we c
centrate on the most simple 2D system with translatio
degrees of freedom, namely hard disks, the situation is no
all clear. Simulation studies provide inconsistent results, w
claims for a weak first-order solid-isotropic transitio
@12,13,15,19,20# and also a continuous solid-isotropic trans
tion @21#; however, since the simulations are performed
finite size systems, the possibility of the pressure tie l
found for the first-order transition becoming shorter or va
ishing altogether as the system size is increased canno
ruled out @18#. The most recent study on extremely larg
systems appears to indicate that while a continuous so
isotropic transition does not occur, neither the first-ord
solid-isotropic pathway nor the continuous solid-hexat
isotropic pathway can be ruled out@23#. This appears to be
due to the fact that the density at which the solid-hexa
dislocation unbinding transition is predicted to occur, that
whenK reaches the value 16p, coincides with the density o
the solid at which a first-order melting transition would ta
place@16#. While the question of whether the melting pat
way for hard disks proceeds via a hexatic phase is un
solved, there is strong evidence for the existence of a hex
phase in other 2D systems; for example, hard core disks w
very narrow attractive~or repulsive! potentials, although this
phase does not necessarily occur as part of the melting
cess@24#. Systems of particles interacting via such potenti
exhibit an isostructural solid-solid transition in which th
lattice spacing jumps discontinuously and, just as for
liquid-vapor transition, the isostructural transition can hav
critical point above which the distinction between the tw
phases vanishes@25#. Since the bulk elastic constan
B5l1m5r(]P/]r)T vanishes at the critical point, there
a finite region around the critical point whereK,16p within
which the solid is unstable to dislocation unbinding. If th
range of the potential is short enough so that the solid-s
critical point occurs far from the solid-liquid transition, th
induced hexatic phase will also occur far from the melti
density. In this case, another hexatic phase may also be
volved in the melting transition. As the range of the potent
is increased, the critical point shifts towards the melting lin
the hexatic phase becomes considerably wider, and a fi
order hexatic-liquid transition can be observed@24,26#. The
important result of these simulations is that small differen
5223 ©2000 The American Physical Society
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in the potential can drastically change the phase behavior
so experiments on colloidal systems@8–11#, in which the
interparticle potential is never truly hard body, and simu
tions of hard disk systems are not always strictly com
rable.

Simulation studies into the melting transition of 2D ha
disks have so far only been performed for perfect cryst
As the melting transition is approached defects are expe
to occur in the solid. Speedy and Reiss@27# have studied the
formation of cavities in 2D hard disk systems and have
tained estimates for the vacancy concentration in the s
phase. Their results indicate that at densitiesr.0.98 ~units
s22, wheres is the diameter of a disk!, the vacancy con-
centration is small enough to be neglected. As the densi
lowered, the vacancy concentration rapidly rises up to ab
two vacancies per 1000 particles at the melting densitr
'0.91. It is important to know whether vacancies at t
concentration will influence the melting pathway and the m
jor point of this paper is to investigate this. In Sec. II, w
describe simulations performed on perfect crystalline s
tems, which are necessary as a reference system and, in
III, the results of simulations on systems with vacancies
presented and discussed.

II. SIMULATIONS ON PERFECT CRYSTAL SYSTEMS

One of the most important implications of the KTHN
theory is that, at the solid-hexatic melting density, a cert
combination of elastic constantsK takes on the universa
value of 16p @see Eq.~1!#. Since the elastic properties de
pend on the melting mechanism, the elastic constants sh
provide a useful tool for understanding the nature of
melting transition. We have determined the 2D Lame´ elastic
constantsl andm over a range of densities using molecu
dynamics simulations on slightly distorted systems@28–30#.
Both stretched and sheared box simulations were use
calculatel and m using the stress-strain relations given
Wallace @31,32#. Care was taken to ensure that the appl
strains were sufficiently small to give a linear response of
diagonal and off-diagonal components of the stress ten
respectively, and that no plastic flow occured in the shea
box simulation. The bulk modulus was compared with th
available directly from the equation of state,B
5r(]P/]r)T , as a check for internal consistency. Oncel
and m have been obtained as a function of density, it
straightforward to obtainK @see Eq.~1!# and so determine
the density at which the KT disclination unbinding transiti
should occur. Simulations to determine the elastic const
for the defect-free 2D hard disk solid have already been p
formed by Wojciechowski and Bran´ka @16# and by Sengupta
et al. @33#. While there is a general agreement for the dens
dependence of the bulk elastic constant from these two s
ies ~which can easily be checked using the equation of sta!,
the values of the shear modulus obtained by Senguptaet al.
are much lower than those by Wojciechowski and Bran´ka
and the former authors claim that this large difference
caused by the small systems used by the latter@33#. Since the
behavior of the perfect crystal is clearly important if we wi
to understand systems with vacancies, we have perfor
extensive simulations to determine the density dependenc
the elastic constants using systems ofN5200, 480, 1920,
nd
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and 4320 hard disks; the earlier simulations of small syste
by Wojciechowski and Bran´ka were performed on 56 par
ticles @16#.

The density dependencies of the bulk and shear ela
constants,B5l1m and m, respectively, obtained from th
stress-strain relations are plotted in Fig. 1, along with
density dependence ofK @see Eq.~1!# and the equation of
state. The data for the bulk elastic constantB are in essential
agreement with earlier works. However, the data for
shear elastic constantm for all system sizes studied appear

FIG. 1. ~a! The bulk and shear elastic constants,B5l1m
~filled symbols! and m ~open symbols!, of the 2D hard disk solid
obtained from simulations with (s) 480, (h) 1920, and (n) 4320
particles. (s) Results of Wojciechowski and Bran´ka @16# and (+)
Senguptaet al. @33#. ~b! The dimensionless combination of elast
constantsK5K/16p @see Eq.~1!#. ~c! The equation of state ob
tained for a system of 1008 particles~filled symbols!. The arrows
indicate the location of the KT dislocation unbinding transition p
dicted by ~solid! the present data and~dotted! Ref. @33#. Units:
density r in s22, pressureP, and elastic constantsl and m in
kBT/s2.
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be in good agreement with that obtained by Wojciechow
and Bran´ka @16#, rather than that of Senguptaet al. @33#.
Indeed, the only significant difference between our res
and those of Wojciechowski and Bran´ka is for the lowest
density studied,r50.92, where the pressure in the larg
systems is found to be slightly higher than in the sma
ones, presumably because the periodic boundary condit
combined with the small box size helps stabilize the so
@23#. Indeed, at this density we were unable to obtain relia
results for the shear elastic constant because, even for
small strains, plastic flow occured in the simulation. T
location of the KT dislocation unbinding transition, whic
occurs whenK516p, determined from our simulations dif
fers rather significantly from that determined from the resu
of Senguptaet al., as shown in Fig. 1~b!. Figure 1~c! indi-
cates the location of the KT transition in relation to the eq
tion of state. The present results indicate that the transi
should occur atr50.9075(25), essentially at the same de
sity at which the first-order transition would occu
@15,17,18#. We note that the elastic constants determined
the bare elastic constants and, as such, are an upper est
of the elastic constants of the infinite size system and
provide a lower bound to the KT transition density. How
ever, the results for the largest system appear to indicate
the renormalisation of the elastic constants by longer wa
length phonons is very weak. Moreover, if we allow for a
gebraic decay ofK in the vicinity of melting @4#, then we
again might expect the KT transition density to shift to ve
slightly higher densities. The results of Senguptaet al. lead
to a much higher value ofr50.9450(25) for the KT transi-
tion density. This seems somewhat surprising since i
rather deep into the region which is generally taken to
solid @15,18#.

We conclude this section by noting that analysis of
elastic constants of the 2D hard disk system indicates tha
KT dislocation unbinding solid-hexatic transition occurs
r50.9075(25), that is, essentially at the same density
which a solid would melt via a first-order solid-isotrop
transition@15#. It appears that we cannot say one way or
other whether the 2D hard disk solid melts discontinuou
through a one stage first-order transition or continuou
through a two stage transition via a hexatic phase. This re

FIG. 2. Average number of vacancies^Nv&/N for the 2D hard
disk solid. Data determined following the approach of Bennett a
Alder ~see text! @35# and (h) data obtained by Speedy and Rei
@27#. Units: densityr in s22.
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is entirely consistent with large scale simulations of 2D ha
disk systems@23#.

III. SIMULATIONS ON DEFECT CRYSTAL SYSTEMS

We may expect that vacancies in a crystalline lattice w
soften the system, leading to lower elastic constants an
shift of the KT transition to higher densities. To proper
determine the influence of vacancies in the solid phase,
must of course ensure that the equilibrium concentration

d

FIG. 3. ~a! The bulk and shear elastic constants,B5l1m
~filled symbols! and m ~open symbols!, of the 2D hard disk solid
with vacancies. Simulations were performed on a system with 1
lattice sites and (s) zero vacancies, (h) two vacancies, and (n)
four vacancies.~b! The dimensionless combination of elastic co
stantsK5K/16p @see Eq.~1!#. ~c! The equations of state obtaine
for the 2D hard disk solid with vacancies. The solid line indica
the equation of state taking vacancies into account, whereas
dotted line indicates the equation of state with no vacancies. Un
density r in s22, pressureP, and elastic constantsl and m in
kBT/s2.
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5226 PRE 61MARTIN A. BATES AND DAAN FRENKEL
achieved for each density studied. This is not an easy tas
a simulation, because the number of lattice sites is usua
conserved quantity. Even if by some means the system
change the number of lattice sites, it will be at the cost o
distortion or a restriction of the number of lattice sites th
can be achieved and so the solid cannot achieve its true e
librium concentration of vacancies. An excellent discuss
of this and other problems of simulating solids is given
Swope and Andersen@34#. To understand if vacancies influ
ence the melting transition in 2D hard disks, we have take
different approach in which we simulate a few systems
which the vacancy concentration is fixed, ranging from z
~the perfect crystal! up to about double the values determin
by Speedy and Reiss at densities in the vicinity of the m
ing transition@27#. Before discussing the calculations for th
elastic constants, we note that we have computed the
cancy concentration as a function of density, as an indep
dent check for the values obtained by Speedy and Reiss
have followed a method similar to that used by Bennett a
Alder for hard spheres@35#; the general idea of this metho
is to measure the Gibbs free energy difference on the
moval of a particle~or the creation of a vacancy!. The Helm-
holtz free energy differencef v on the insertion of a particle
into a vacancy can be calculated by trial insertion on a s
tem with a single vacancy,

f v52kBT log@VWSPacc~VWS!#, ~2!

where VWS is the volume of the Wigner–Seitz cell an
Pacc(VWS) is the probability that a trial insertion will be
accepted within the vacant cell. However, since the prod
VWSPacc(VWS) is equal to the cavity volume, actual partic
insertions do not need to be performed, rather the ca
volume needs to be calculated. Note that we are assum
that interstitial-vacancy pairs are not formed~and thus that
no new vacancies are created! and so the cavity volume mea
sured is due only to the presence of the one imposed
cancy. Once the change in free energy of a crystal due to
creation of a vacancy, which is equal to2 f v , is known the
average number of vacancies may be calculated@35#,

^Nv&
N

5exp@2~m2 f v!/kBT#. ~3!

The cavity volume was calculated as a function of density
the solid phase using the algorithm described in Ref.@27#.
For the chemical potentialm we have used the value dete
mined at melting by Alder, Hoover, and Young@36# along
with thermodynamic integration along the solid branch of
equation of state, which gives results consistent with thos
Ref. @27#. The results for the vacancy concentration in 2
hard disk solids are shown in Fig. 2. We find fair agreem
with the results of Speedy and Reiss at the points where
calculated the vacancy concentration.
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Molecular dynamics simulations were performed for
defect-free system ofN51008 particles as in Sec. II, to ob
tain the equation of state and the elastic constants as a f
tion of density. The same system, withNvac particles re-
moved, was then used to investigate the influence
vacancies; we performed two series of simulations w
Nvac52 and 4. Simulations were performed only for den
tiesr<0.95, where vacancies are predicted to occur at a h
enough density such that they cannot be ignored@27#. In
every case, long equilibration runs@50 000 molecular dy-
namics~MD! steps or more, where one step meansN colli-
sions! were performed to ensure that the vacancy had
fused away from its initial location. Results for the dens
dependencies of the elastic constants and pressure fo
different systems withNvac50, 2, and 4 are shown in Fig. 3
Note that in all cases, the densityr is the number density o
the system. It is apparent from Figs. 3~a! and 3~b! that the
elastic constants do not depend significantly on the vaca
concentration. Indeed, the location of the KT transition@see
Fig. 3~b!# appears to be essentially unchanged when vac
cies are introduced into the system. The only observable
ference occurs in the equation of state@see Fig. 3~c!#. At
number densitiesr<0.88, the data for the three systems
follow the same continuous line, as we expect since the
uid is known to be the stable phase in this regime@18# and so
the introduction of vacancies only serves to lower the d
sity. This is not the case in the solid branch. Here, the int
duction of vacancies leads to a shift in the equation of s
to lower densities. Since we do not expect the crystall
system to be able to rearrange itself to form a system w
fewer lattice sites@34#, the data do not lie on the same curv
The pressure for each system is essentially constant at fi
lattice site density, which means that the pressure is
creased on the introduction of vacancies at fixed num
density@see Fig. 3~c!#. From the results presented in Fig.
we expect the system to follow an equation of state wh
crosses smoothly from that determined forNvac50 to that
for Nvac52, as shown in Fig. 3~c!. While this means that the
melting density of the solid will be reduced, this is n
shifted significantly (;0.2%) for the vacancy concentration
typical of the hard disk fluid at melting@27#. We conclude
that the melting mechanism is essentially unchanged with
introduction of the small number of vacancies expected
the vicinity of the melting transition.
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